Archives For big data

The CPI Antitrust Chronicle published Geoffrey Manne’s and my recent paperThe Problems and Perils of Bootstrapping Privacy and Data into an Antitrust Framework as part of a symposium on Big Data in the May 2015 issue. All of the papers are worth reading and pondering, but of course ours is the best ;).

In it, we analyze two of the most prominent theories of antitrust harm arising from data collection: privacy as a factor of non-price competition, and price discrimination facilitated by data collection. We also analyze whether data is serving as a barrier to entry and effectively preventing competition. We argue that, in the current marketplace, there are no plausible harms to competition arising from either non-price effects or price discrimination due to data collection online and that there is no data barrier to entry preventing effective competition.

The issues of how to regulate privacy issues and what role competition authorities should in that, are only likely to increase in importance as the Internet marketplace continues to grow and evolve. The European Commission and the FTC have been called on by scholars and advocates to take greater consideration of privacy concerns during merger review and encouraged to even bring monopolization claims based upon data dominance. These calls should be rejected unless these theories can satisfy the rigorous economic review of antitrust law. In our humble opinion, they cannot do so at this time.

Excerpts:

PRIVACY AS AN ELEMENT OF NON-PRICE COMPETITION

The Horizontal Merger Guidelines have long recognized that anticompetitive effects may “be manifested in non-price terms and conditions that adversely affect customers.” But this notion, while largely unobjectionable in the abstract, still presents significant problems in actual application.

First, product quality effects can be extremely difficult to distinguish from price effects. Quality-adjusted price is usually the touchstone by which antitrust regulators assess prices for competitive effects analysis. Disentangling (allegedly) anticompetitive quality effects from simultaneous (neutral or pro-competitive) price effects is an imprecise exercise, at best. For this reason, proving a product-quality case alone is very difficult and requires connecting the degradation of a particular element of product quality to a net gain in advantage for the monopolist.

Second, invariably product quality can be measured on more than one dimension. For instance, product quality could include both function and aesthetics: A watch’s quality lies in both its ability to tell time as well as how nice it looks on your wrist. A non-price effects analysis involving product quality across multiple dimensions becomes exceedingly difficult if there is a tradeoff in consumer welfare between the dimensions. Thus, for example, a smaller watch battery may improve its aesthetics, but also reduce its reliability. Any such analysis would necessarily involve a complex and imprecise comparison of the relative magnitudes of harm/benefit to consumers who prefer one type of quality to another.

PRICE DISCRIMINATION AS A PRIVACY HARM

If non-price effects cannot be relied upon to establish competitive injury (as explained above), then what can be the basis for incorporating privacy concerns into antitrust? One argument is that major data collectors (e.g., Google and Facebook) facilitate price discrimination.

The argument can be summed up as follows: Price discrimination could be a harm to consumers that antitrust law takes into consideration. Because companies like Google and Facebook are able to collect a great deal of data about their users for analysis, businesses could segment groups based on certain characteristics and offer them different deals. The resulting price discrimination could lead to many consumers paying more than they would in the absence of the data collection. Therefore, the data collection by these major online companies facilitates price discrimination that harms consumer welfare.

This argument misses a large part of the story, however. The flip side is that price discrimination could have benefits to those who receive lower prices from the scheme than they would have in the absence of the data collection, a possibility explored by the recent White House Report on Big Data and Differential Pricing.

While privacy advocates have focused on the possible negative effects of price discrimination to one subset of consumers, they generally ignore the positive effects of businesses being able to expand output by serving previously underserved consumers. It is inconsistent with basic economic logic to suggest that a business relying on metrics would want to serve only those who can pay more by charging them a lower price, while charging those who cannot afford it a larger one. If anything, price discrimination would likely promote more egalitarian outcomes by allowing companies to offer lower prices to poorer segments of the population—segments that can be identified by data collection and analysis.

If this group favored by “personalized pricing” is as big as—or bigger than—the group that pays higher prices, then it is difficult to state that the practice leads to a reduction in consumer welfare, even if this can be divorced from total welfare. Again, the question becomes one of magnitudes that has yet to be considered in detail by privacy advocates.

DATA BARRIER TO ENTRY

Either of these theories of harm is predicated on the inability or difficulty of competitors to develop alternative products in the marketplace—the so-called “data barrier to entry.” The argument is that upstarts do not have sufficient data to compete with established players like Google and Facebook, which in turn employ their data to both attract online advertisers as well as foreclose their competitors from this crucial source of revenue. There are at least four reasons to be dubious of such arguments:

  1. Data is useful to all industries, not just online companies;
  2. It’s not the amount of data, but how you use it;
  3. Competition online is one click or swipe away; and
  4. Access to data is not exclusive

CONCLUSION

Privacy advocates have thus far failed to make their case. Even in their most plausible forms, the arguments for incorporating privacy and data concerns into antitrust analysis do not survive legal and economic scrutiny. In the absence of strong arguments suggesting likely anticompetitive effects, and in the face of enormous analytical problems (and thus a high risk of error cost), privacy should remain a matter of consumer protection, not of antitrust.

On Wednesday, March 18, our fellow law-and-economics-focused brethren at George Mason’s Law and Economics Center will host a very interesting morning briefing on the intersection of privacy, big data, consumer protection, and antitrust. FTC Commissioner Maureen Ohlhausen will keynote and she will be followed by what looks like will be a lively panel discussion. If you are in DC you can join in person, but you can also watch online. More details below.
Please join the LEC in person or online for a morning of lively discussion on this topic. FTC Commissioner Maureen K. Ohlhausen will set the stage by discussing her Antitrust Law Journal article, “Competition, Consumer Protection and The Right [Approach] To Privacy“. A panel discussion on big data and antitrust, which includes some of the leading thinkers on the subject, will follow.
Other featured speakers include:

Allen P. Grunes
Founder, The Konkurrenz Group and Data Competition Institute

Andres Lerner
Executive Vice President, Compass Lexecon

Darren S. Tucker
Partner, Morgan Lewis

Nathan Newman
Director, Economic and Technology Strategies LLC

Moderator: James C. Cooper
Director, Research and Policy, Law & Economics Center

A full agenda is available click here.